The priming of amylose synthesis in Arabidopsis leaves.

نویسندگان

  • Samuel C Zeeman
  • Steven M Smith
  • Alison M Smith
چکیده

We investigated the mechanism of amylose synthesis in Arabidopsis leaves using (14)C-labeling techniques. First, we tested the hypothesis that short malto-oligosaccharides (MOS) may act as primers for granule-bound starch synthase I. We found increased amylose synthesis in isolated starch granules supplied with ADP[(14)C]glucose (ADP[(14)C]Glc) and MOS compared with granules supplied with ADP[(14)C]Glc but no MOS. Furthermore, using a MOS-accumulating mutant (dpe1), we found that more amylose was synthesized than in the wild type, correlating with the amount of MOS in vivo. When wild-type and mutant plants were tested in conditions where both lines had similar MOS contents, no difference in amylose synthesis was observed. We also tested the hypothesis that branches of amylopectin might serve as the primers for granule-bound starch synthase I. In this model, elongated branches of amylopectin are subsequently cleaved to form amylose. We conducted pulse-chase experiments, supplying a pulse of ADP[(14)C]Glc to isolated starch granules or (14)CO(2) to intact plants, followed by a chase period in unlabeled substrate. We detected no transfer of label from the amylopectin fraction to the amylose fraction of starch either in isolated starch granules or in intact leaves, despite varying the time course of the experiments and using a mutant line (sex4) in which high-amylose starch is synthesized. We therefore find no evidence for amylopectin-primed amylose synthesis in Arabidopsis. We propose that MOS are the primers for amylose synthesis in Arabidopsis leaves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PROTEIN TARGETING TO STARCH Is Required for Localising GRANULE-BOUND STARCH SYNTHASE to Starch Granules and for Normal Amylose Synthesis in Arabidopsis

The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing proce...

متن کامل

Discrete forms of amylose are synthesized by isoforms of GBSSI in pea.

Amyloses with distinct molecular masses are found in the starch of pea embryos compared with the starch of pea leaves. In pea embryos, a granule-bound starch synthase protein (GBSSIa) is required for the synthesis of a significant portion of the amylose. However, this protein seems to be insignificant in the synthesis of amylose in pea leaves. cDNA clones encoding a second isoform of GBSSI, GBS...

متن کامل

Starch synthesis in Arabidopsis. Granule synthesis, composition, and structure.

The aim of this work was to characterize starch synthesis, composition, and granule structure in Arabidopsis leaves. First, the potential role of starch-degrading enzymes during starch accumulation was investigated. To discover whether simultaneous synthesis and degradation of starch occurred during net accumulation, starch was labeled by supplying (14)CO(2) to intact, photosynthesizing plants....

متن کامل

Synthesis and Production of Sweet-Tasting Protein in E. coli and Purification by Amylose Resin

A sweet water-soluble protein that reminds stable over wide ranges of temperature and pH, Brazzein has various applications. Its tastes like cane sugar but have no calories. However, the extraction of brazzein from its natural source is expensive and not applicable. In this study we used recombinant DNA technology to provide an alternative option for cheaper mass production of brazzein. A brazz...

متن کامل

Starch and its component ratio in developing cotton leaves.

During cotton leaf development, starch accumulation was characterized by an initial rise to a maximum at the second to the fourth leaf from the apex. Then, starch content progressively decreased with leaf age. Starch accumulation was inversely related to the ratio of amylopectin to amylose. Differences between leaves in this ratio resulted from variations in both amylose and amylopectin levels....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 128 3  شماره 

صفحات  -

تاریخ انتشار 2002